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A device constructed from a filament of paramagnetic beads connected to a human
red blood cell will swim when subject to an oscillating magnetic field. Bending waves
propagate from the tip of the tail toward the red blood cell in a fashion analogous
to flagellum beating, making the artificial swimmer a candidate for studying what
has been referred to as ‘flexible oar’ micro-swimming. In this study, we demonstrate
that under the influence of a rotating field the artificial swimmer will perform
‘corkscrew’-type swimming. We conduct numerical simulations of the swimmer
where the paramagnetic tail is represented as a series of rigid spheres connected
by flexible but inextensible links. An optimal range of parameters governing the
relative strength of viscous, elastic and magnetic forces is identified for swimming
speed. A parameterization of the motion is extracted and examined as a function of
the driving frequency. With a continuous elastica/resistive force model, we obtain an
expression for the swimming speed in the low-frequency limit. Using this expression
we explore further the effects of the applied field, the ratio of the transverse field
to the constant field, and the ratio of the radius of the sphere to the length of the
filament tail on the resulting dynamics.

1. Introduction
Low-Reynolds-number flows are kinematically reversible, and, accordingly, to

generate a net translation a micro-swimmer’s cyclic strategy must be one that is
non-reciprocal (Purcell 1977). Many of the single cell micro-organisms that propel
themselves in this environment utilize a long flagellum tail connected to the cell
body. Purcell categorizes the majority of these flagella or one-armed swimmers as
either those that use a ‘flexible oar’ strategy, or a ‘corkscrew’ strategy. The ‘flexible
oar’ swimmers, such as spermatozoa, swim by propagating bending waves down the
length of their flagellum tail, while swimmers applying the ‘corkscrew’ strategy, such
as E. coli bacteria, rotate their helically shaped flagellum or flagellar bundles which
afford the conversion of rotational to translational motion.

Beginning with G. I. Taylor’s study of a swimming sheet (Taylor 1951) and
subsequent analysis concerning motions associated with waves generated along a
cylindrical tail (Taylor 1952), the development of model systems has been essential
to understanding the fundamental principles surrounding the swimming of micro-
organisms. Recent investigations that keep with this approach include studies of
Purcell’s three-link swimmer (Purcell 1977; Becker, Koehler & Stone 2003) and the
measurements of the lateral force generated by filament when one end is displaced
transversely in an oscillatory manner (Wiggins et al. 1998; Yu, Lauga & Hosoi 2006;
Lauga 2007). A promising candidate for an additional model system is the artificial
magnetic micro-swimmer produced by Dreyfus et al. (2005).
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The artificial swimmer consists of a flexible magnetic flagellum-like tail connected
to a human red blood cell. The red blood cell provides the asymmetry necessary
for swimming to occur. The magnetic filament comprises spherical micron-sized
paramagnetic beads linked together by DNA molecules. To form the filament, the
paramagnetic beads are allowed to aggregate under the influence of a uniform
magnetic field, forming chains aligned with the applied field (Promislow, Gast &
Fermigier 1995). The surfaces of the beads are chemically treated so, when introduced,
the DNA molecules bind the self-assembled beads together. The elastic properties of
such filaments have been studied by Goubault et al. (2003) and Biswal & Gast (2003)
and used as a key component of a mixing device by Biswal & Gast (2004).

Driving the motion of the swimmer is the oscillatory magnetic field of the form

H = −H0 (1, h0 sinωt, 0) . (1.1)

The competing magnetic forces and viscous stresses induce bending waves that travel
from the tip of the filament tail and towards the red blood cell. In this study, we
demonstrate the artificial micro-swimmer can also be used to study corkscrew-type
swimming. When driven by the field

H = −H0 (1, h0 sin ωt, h0 cos ωt) , (1.2)

the balance of the magnetic, viscous and elastic forces cause the swimmer to take on
a spiral shape. Additionally, the swimmer will rotate at the same frequency as the
applied field, and therefore, translate through the fluid.

Two distinct models are adopted to describe the behaviour of a swimmer
constructed from a magnetic filament tethered to a large rigid sphere. The first
model is a particle-based approach presented in § 2, where the filament tail is treated
as a series of rigid spheres joined by flexible, but inextensible links. The parameters
for bead size and chain length may therefore be matched to experimental conditions.
Additionally, the three-dimensional bending of each individual chemically formed link
is accounted for. The particle-based representation also allows for mutual magnetic
dipole interactions. A higher-order representation of the hydrodynamic forces is
provided by the force-coupling method (FCM) (Maxey & Patel 2001; Lomholt &
Maxey 2003). The inclusion of these features goes beyond the description employed
by Gauger & Stark (2006) to study the swimmer under planar actuation where the
beads comprising the tail interacted magnetically through fixed dipole interactions
and experienced fluid forces based on the Rotne–Prager mobility. Additionally,
the resistance to bending was represented by a wormlike chain: see Lagomarsino,
Pagonabarraga & Lowe (2005) and Lowe (2003). The results from our particle-based
simulations are presented in § 3, from which the kinematics of the swimmer’s motion
are deduced and analysed. The variation of the swimming speed with the frequency
of the applied field is examined.

Along with the particle-based description and simulations, we consider a model
where the magnetic filament tail is treated as a continuous elastica subject to magnetic
torques and hydrodynamic drag. These simplifications yield a model that includes the
features essential to the motion, but is still accessible to analysis. This allows us to
explore further the parameters governing the swimming speed and make comparisons
with the more realistic particle-based simulations. Elastica models, in combination
with slender body theory for the hydrodynamic forces, have been the basis of a number
of studies including the discussion by Dreyfus et al. (2005) of their experiments with
the artificial swimmer, and by Cebers & Javaitis (2004a), Cebers & Javaitis (2004b)
and Cebers (2006) for magnetic filaments in rotating fields and shear flows. In § 4,
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Figure 1. (a) Sketch of a section of the magnetic filament tail showing the position, Yn, radius
an, and the unit vector tn for bead n. The vector tn points from the particle’s centre to the
attachment point of the link. (b) Sketch of two neighbouring particles of the filament. The
link exerts a force Fn−1

elas on bead n − 1 and an equal and opposite force on bead n. The shape
of the link is characterized by the coordinate system (t, p, q) that varies along the length and
attains values (tn−1, pn−1, qn−1) at the left attachment point, and (tn, pn, qn) at the opposite
end.

we extend the model of Roper et al. (2006) used in their study of magnetically
driven elastic filaments to include fully three-dimensional motion and a higher-level
representation of the magnetic interactions. An analysis of spiral swimming at low
frequency is then given in § 5.

2. Simulation methods
In the particle-based approach, the magnetic swimmer is treated as a series of N +1

rigid spheres, where the first N beads are paramagnetic and comprise the filament
tail. Bead N + 1 is a large, non-paramagnetic sphere and provides a representation
of the artificial swimmer’s red blood cell cargo (Dreyfus et al. 2005). Each bead
n = 1 . . . N + 1 centred at Y n has local body axes (tn, pn, qn) and is of radius an,
where an = a for the paramagnetic spheres n = 1 . . . N and aN+1 = R for the large
sphere (figure 1a). In the experiments, the ratio R/a ≈ 6.0 (Dreyfus et al. 2005).
The unit vector tn is defined such that the locations of points on the surface of
sphere n where the two links are attached are Y n ± an tn. Additionally, magnetic
beads comprising the tail have magnetic permeability µ. The permeability of the
surrounding medium is taken to be that of free space µ0.

In the experiments, the paramagnetic beads are of radius a =0.5 µm and a
typical frequency of the applied field is ω = 62.8 rad s−1 (Dreyfus et al. 2005).
With the viscosity of the surrounding fluid, η, being that of water, the Reynolds
number corresponding to the motion is Re = ρωa2/η ≈ 10−5 (Roper et al. 2006).
Under the conditions for low-Reynolds-number Stokes flow, the resulting magnetic,
hydrodynamic and elastic forces and the hydrodynamic and elastic torques on the
beads are, at any instant, in equilibrium,

Fn
hydro + Fn

mag + Fn
elas = 0, (2.1)

τ n
hydro + τ n

elas = 0, (2.2)
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for n = 1 . . . N . The force and torque balance for n = N + 1 is the same, except that
there are no magnetic forces to consider.

Neglected in the force and torque balances are the effects of thermal fluctuations.
One might imagine a situation where Brownian motion may have a significant impact
on the motion of the micron-sized paramagnetic beads. In this context, the relative
importance of these effects is provided by the parameter

Λ =
µ0πa3χ2H 2

0

9kT
, (2.3)

which is the ratio of the dipole interaction energy to the thermal energy (Promislow,
Gast & Fermigier 1995). Therefore, when Λ � 1 the effects of Brownian motion
may be ignored. Assuming the experiments of Dreyfus et al. (2005) were performed
at T = 300 K, a representative value based on the reported properties of the beads
and the magnitude of the applied field used is Λ ≈ 630. Consequently, thermal effects
may be ignored when considering the dynamics of the artificial swimmer.

2.1. Magnetic interactions

To resolve completely the magnetic interactions between the beads requires
determining a solution to Laplace’s equation for the scalar potential Φ , where
H = −∇Φ , subject to the appropriate boundary conditions on the surface of each
bead and at infinity (Jackson 1999). From this solution, the total magnetic field can
be ascertained and the Maxwell stress tensor evaluated to give the interbead magnetic
forces. This process is often quite cumbersome and involves providing values for the
many magnetic multipoles arising from the complex interactions (Clercx & Bossis
1993). To reduce this to a tractable problem, we consider merely the interactions
arising from the dipole terms. We do, however, allow the magnetic dipoles of each
bead to depend on the value of the local field, not just the applied field. Accordingly,
the dipole moment of particle n is given by (Jackson 1999)

mn =
4

3
πχa3

n H tot(Y n), (2.4)

where the magnetic susceptibility χ = (3(µ − µ0))/(µ + 2µ0) and

H tot(Y n) = H(t) +
∑
q �=n

1

4π

(
3(Y n − Y q)(Y n − Y q) · mq

r5
nq

− mq

r3
nq

)
(2.5)

with rnq =
√

(Y n − Y q) · (Y n − Y q). The dipole moments are found by solving the
3N × 3N system of linear equations provided by (2.4) and (2.5).

After determining the dipole moments, the magnetic force on particle n is computed
from

Fn
mag = µ0∇Yn

(mn · H tot(Y n)) . (2.6)

There are no magnetic torques on the beads as the dipole moments are in the same
direction as the local field for each particle:

τ n
mag = µ0mn × H tot(Y n) = 0. (2.7)

2.2. Elastic coupling

The chemically formed links produce elastic forces and bending moments that act to
return a bent filament to its original linear configuration. This effect is captured by
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treating each link as an inextensible, but flexible rod of length l. In such a description,
the force and moment balance (Landau & Lifshitz 1986) for a link are

dN
ds

+ K = 0, (2.8)

dM
ds

+ t × N + τ = 0. (2.9)

N(s) is the resultant internal stress on a cross-section and M(s) is the moment of
the internal stresses on the cross-section. Both N(s) and M(s) vary with arclength
0 � s � l and balance the applied forces per unit length K and torques per
unit length τ . In (2.9), t denotes the vector tangent to the centreline of the link.
The moment M is related to the deformation of the link through the constitutive
law

M = κ t × dt
ds

+ C t
dΨ

ds
, (2.10)

where κ is the bending modulus, C the twist modulus, and Ψ the twist angle.
Consider the link connecting beads n − 1 and n. This link begins (s = 0) at the

point Y n−1 + an−1 tn−1 on the surface of bead n − 1 and ends (s = l) at Y n − an tn on
the surface of bead n as shown in figure 1(b). At the points of contact, the centreline
of the link is taken to be perpendicular to the surfaces of the spheres corresponding
to the clamped-end boundary conditions t = tn−1 at s = 0 and t = tn at s = l. The
link is inextensible and there is the constraint

(Y n − Y n−1) − an tn − an−1 tn−1 =

∫ l

0

t ds (2.11)

on the components of the vector pointing from the attachment site on bead n − 1
to that on bead n. Associated with this constraint are the force on bead n − 1,
Fn−1

elas = λ1 tn−1 + λ2 pn−1 + λ3qn−1 and the equal and opposite force on bead n,
Fn

elas = −Fn−1
elas . These forces will produce opposite forces that act on the ends of

the link and serve as boundary conditions for the force balance (2.8). As we do not
consider any other forces (K = 0) on the link, (2.8) becomes

dN
ds

= 0 (2.12)

and from the boundary conditions N = Fn−1
elas . Since there are no external torques on

the link, τ = 0 and the moment balance (2.9) reduces to

dM
ds

+ t × Fn−1
elas = 0. (2.13)

It remains to determine the resulting link shape by solving (2.13) with the con-
stitutive law (2.10). Using the Euler angles (Φ(s), Θ(s), Ψ (s)) to describe the
continuous deformation of the link between the two ends, the orientation of the
coordinate system (t, p, q) along the link relative to the coordinate system at s = 0
(tn−1, pn−1, qn−1) is ⎡

⎣ t
p
q

⎤
⎦ = A(s)

⎡
⎣ tn−1

pn−1

qn−1

⎤
⎦ . (2.14)
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with

A=

⎡
⎣ cos Θ cosΦ cos Θ sinΦ − sin Θ

sinΨ cos Φ sinΘ − sinΦ cosΨ sin Ψ sinΦ sin Θ + cosΦ cosΨ sin Ψ cos Θ

cosΦ cos Ψ sin Θ + sin Ψ sinΦ cosΨ sinΦ sin Θ − sinΨ cos Φ cos Ψ cosΘ

⎤
⎦.

(2.15)

Using this expression for t in (2.10) and (2.13) and recognizing Ψ as the twist angle,
we obtain the differential equations

C
d2Ψ

ds2
= 0,

κ
d2Θ

ds2
+ κ cos Θ sinΘ

(
dΦ

ds

)2

+ C cos Θ
dΦ

ds

dΨ

ds
= λ1 cosΦ sinΘ

+λ2 sinΦ sinΘ + λ3 cosΘ,

κ cos Θ
d2Φ

ds2
− 2κ sinΘ

dΘ

ds

dΦ

dl
− C

dΘ

ds

dΨ

ds
= λ1 sinΦ − λ2 cosΦ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.16)

In the experiments, the length of the DNA molecules linking the beads are a
fraction (10 %) of a bead’s diameter (Dreyfus et al. 2005) and, therefore, we do not
expect a large variation in the radius of curvature along the length of the link. We
are then justified in considering the linearized version of (2.16):

C
d2Ψ

ds2
= 0, (2.17)

κ
d2Θ

ds2
= λ1Θ + λ3, (2.18)

κ
d2Φ

ds2
= λ1Φ − λ2. (2.19)

Finally, to obtain the shape of the link, we solve equations (2.17)–(2.19) subject to
clamped-end boundary conditions

(Ψ, Θ, Φ) = (0, 0, 0) at s = 0,

(Ψ, Θ, Φ) = (Ψn, Θn, Φn) at s = l.

}
(2.20)

The solution to (2.17) with these boundary conditions is

Ψ (s) =
Ψn

l
s. (2.21)

The solutions to the bending equations (2.18) and (2.19) depend on the sign of λ1 and
are provided in Appendix A.

In addition to the forces Fn−1
elas and −Fn

elas, the link exerts elastic torques on the
particles,

τ n−1
elas = M(0) + an−1

(
tn−1 × Fn−1

elas

)
τ n

elas = −M(l) − an

(
tn × Fn

elas

)
}

(2.22)

2.3. Hydrodynamic interactions

After determining the magnetic and elastic forces and torques on the beads, all
the external forces and torques are known, and according to (2.1) and (2.2) must
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be balanced by the hydrodynamic forces and torques. This establishes a mobility
problem that must be solved to determine the motion of the particle phase. The
low-Reynolds-number conditions reveal the linear relationship between the external
forces and torques and the velocities and angular velocities of the beads[

Fmag + Felas

Telas

]
= R

[
V
W

]
, (2.23)

where Fmag and Felas are the 3N × 1 vectors containing
all the information regarding the forces on all the beads. Similarly, Telas, V
and W are 3N × 1 vectors holding all the torque, velocity and angular velocity
information for all the particles respectively. The 6N × 6N configuration-dependent,
grand resistance matrix, R, relates the forces and torques to the particle motion and
the components of R must first be calculated before the linear system can be solved.
Rather than perform these computations directly, the force-coupling method (FCM)
(Maxey & Patel 2001; Lomholt & Maxey 2003) is used to evaluate the mobility
problem in an approximate, yet accurate and efficient manner. Since fluid inertia
is negligible (Re ≈ 10−5), the Stokes equations govern the flow. The particles are
represented by a finite force multipole expansion taken to the level of force dipoles,

∇p − η∇2u =

N+1∑
n=1

Fn
ext∆n(x − Y n) +

N+1∑
n=1

Gn · ∇Ξn(x − Y n), (2.24)

∇ · u = 0, (2.25)

where

∆n(x) =
(
2πσ 2

n,∆

)−3/2
e−r2/2σ 2

n,∆ , (2.26)

Ξn(x) =
(
2πσ 2

n,Ξ

)−3/2
e−r2/2σ 2

n,Ξ . (2.27)

The parameters σn,∆ and σn,Ξ are set by matching the conditions for particle motion
in Stokes flow and are related to the bead radius an as σn,∆ = an/

√
π and σn,∆ =

an/(6
√

π)1/3. Fn
ext = Fn

elas+Fn
mag is the total external force on bead n. The antisymmetric

part of the tensor Gn is, in index notation, Gn
ij = (1/2)εijkτ

n
elas,k and the symmetric

part is chosen so ∫
1

2
(∇u + (∇u)T)Ξn(x − Y n) d3x = 0. (2.28)

Once the flow field is found, the velocity and angular velocity of bead n are
computed from

V n =

∫
u(x)∆n(x − Y n) d3x, (2.29)

Ωn =
1

2

∫
ω(x)Ξn(x − Y n) d3x, (2.30)

where ω is the vorticity of the fluid. FCM preserves a consistent balance between
the viscous dissipation in the flow and the rate of work by the particle phase
and the external forces. It further captures the corresponding degenerate multipole
contributions to the flow and includes the Faxén corrections for particle motion in a
spatially varying flow field.
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After computing the translational and angular velocities, we numerically integrate
the equations of motion,

dY n

dt
= V n, (2.31)

dtn

dt
= Ωn × tn, (2.32)

d pn

dt
= Ωn × pn, (2.33)

dqn

dt
= Ωn × qn, (2.34)

for each bead n using an explicit, stiffly stable second-order scheme (Karniadakis,
Israeli & Orszag 1991). As the positions and orientations are updated, the
inextensibility constraints for each link (2.11) are verified. As necessary, the values of
(λ1, λ2, λ3) for a given link are adjusted by a penalty scheme to keep the deviation
in length below the strict tolerance 2.5 × 10−4l. With the penalty scheme, the forces
are updated in an iterative fashion such that, if the resulting motion of the beads
does not comply with the set of constraints, that time step is rejected and the elastic
forces are modified in proportion to the deviation from the constraint. The motion is
then recomputed with the new elastic forces, but for the same particle configuration.
The process is repeated, if necessary, and the time step is accepted only once the
constraints are satisfied.

3. Simulation results
The simulations are conducted using a set of computational units where the bead

radius, a, has unit value. The filament tail is composed of N = 15 spheres of magnetic
susceptibility χ = 1.0. The length of the links connecting the beads is l = 0.2a and
corresponds to the length of the DNA linkages in the experiments (Dreyfus et al.
2005). The total length of the filament is taken to be L = N(2a + l) − l = 32.8a and
with the radius of the large sphere at the tethered end R = 6.0a, the ratio R/L =
0.183.

Dreyfus et al. (2005) examined how the scaled swimming speed, U = V/(Lω),
changes with the sperm number

Sp =

(
4πηωL4

Kb

)1/4

(3.1)

for different values of the magnetoelastic number

Mn =
πµ0(χaH0L)2

6Kb(1 − χ/6)(1 + χ/12)
(3.2)

when the swimmer is subject to the field (1.1). The sperm number is the ratio of
the viscous to elastic forces and provides a measure of the magnitude of oscillation
frequency. The magnetoelastic number is ratio of the magnetic forces to elastic forces
and scales with the field strength squared. In the expressions for Sp and Mn we see
the quantity Kb, the effective bending modulus of the filament. The value of Kb is
related to the bending modulus of the link through Kb = (2a + l)κ/l. This is a result
of requiring that the bending moment of a continuous filament of constant radius
of curvature and length 2a + l be equal to that generated by a short link of length
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l connecting two rigid segments each of length a if the beginning and end points in
the two scenarios are coincident. The parameters Sp and Mn together with the values
of h0, χ , R/L and C/κ determine the mechanical properties of the swimmer. The
experiments were conducted over the range 1 � Sp � 6.3 for Mn = 4.5, 11.7 and 16
with h0 = 1.07 − 1.16 and R/L = 0.129 or 0.246.

In the simulations, a swimmer is driven by the magnetic field (1.2) with h0 = 1.0
and C/κ = 1.0. By adjusting the values of ω and H0, the scaled swimming speed, U ,
is computed over the range 1 � Sp � 6 for Mn = 5, 10 and 15.

Figure 2 shows the kinematics of the motion over one period for various Sp with
Mn = 10. The resulting scaled swimming speeds over this range of Sp are provided
in figure 3(a). In each case, the direction of swimming is such that the tethered end
is at the rear of the swimmer as it swims ‘tail first.’ At low Sp, the filament tail
remains aligned with the applied field, and together the tail and cell head rotate as
a rigid body (figures 2a and 2b). Such a motion is reciprocal, or time-reversible, and
accordingly, does not exhibit a net translation (Purcell 1977). Also, at low frequencies,
there is significant motion of the large sphere at the tethered end as the swimmer
pivots about a point within the tail. As the driving frequency is increased, viscous
stresses become significant, causing the filament to deform into a spiral shape (fig-
ures 2c and 2d). Over this range of frequencies we see the swimming speed increase
as the subsequent rotation of the spiral shape allows for the swimmer’s translation
through the fluid. If Sp is increased beyond the value corresponding to the peak
swimming speed, the swimming speed is reduced as the amplitude of the deformation
is diminished by the overwhelming viscous stresses (figures 2g and 2h). The variation
of scaled swimming speed with Sp for planar actuation behaves in a similar manner
(Gauger & Stark 2006).

In figure 3(a) we see that increasing Mn leads to a greater peak swimming speeds.
At low Sp, the rate at which the swimming speed grows decreases with increasing
Mn. This is a result of the filament tail’s ability to remain straight and aligned with
the field at greater field strengths. Figure 3(b) compares the scaled swimming speeds
achieved from the use of the oscillating field (1.1) to those produced by the rotating
field with Mn = 10. The scaled swimming speeds resulting from planar actuation are
computed using the present methods and are consistent with those of Dreyfus et al.
(2005) and Gauger & Stark (2006). While the swimming speeds are comparable at
lower Sp, the speed of the swimmer in the planar oscillating field reaches its maximum
value while that of the spiral swimmer continues to grow. The maximum speed for
the swimmer in the rotating magnetic field is 60 % greater than that in the planar
oscillating field. The magnitude of the rotating field (1.2) remains constant but the
oscillating field (1.1) fluctuates in magnitude and on average is smaller.

From the simulations, it is observed that regardless of the value of Sp, the balance
of the viscous, magnetic and elastic forces induces a corkscrew shape whose pitch and
distance from the x-axis vary along the length of the filament (figure 2). The resulting
shape rotates about the x-axis with the same frequency as the applied field. Such a sta-
tionary shape is also exhibited by a non-magnetic elastic filament with a torque applied
to one end (Manghi, Schlagberger & Netz 2006). Although for the cases considered
here a time-independent shape was exhibited by the swimmer, above a critical fre-
quency of the applied field, this may not be the case especially if h0 > 1. In this regime,
the phase shift will increase in time until, eventually, the applied torque will reverse
its direction leading to a reversal in the rotation of the filament (Cebers & Javaitis
2004b). This behaviour is related to that exhibited by a pair of non-magnetic particles
in a ferrofluid subject to a rotating field (Helgesen, Pieranski & Skjeltorp 1990).
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Figure 2. End-on and oblique views of the time-composite kinematics of the magnetic
micro-swimmer over the course of one period with R/L = 0.183, h0 = 1.0 and Mn = 10;
(a) and (b) correspond to Sp = 1.5, (c) and (d) to Sp = 3.0, (e) and (f ) to Sp = 4.5 and (g)
and (h) to Sp = 5.5.



Spiral swimming of an artificial micro-swimmer 303

0 1 2 3 4 5 6 7

0.002

0.004

0.006

0.008

0.010

0.012

Sp

U

(a) (b)

0 1 2 3 4 5 6 7

0.002

0.004

0.006

0.008

0.010

0.012

Sp

Figure 3. Scaled swimming speed U versus sperm number. (a) Scaled swimming speed
computed using full hydrodynamic model. The dotted line with triangular markers corresponds
to Mn = 5, the solid line with the circular markers indicates the Mn = 10 data, and the dashed
line with the square markers is the Mn = 15 case. (b) Scaled swimming speed for Mn = 10 for
different strategies. The solid line with circular markers corresponds to the rotary scheme (1.2)
and the dashed line with square markers the planar strategy (1.1).

The steady-state position along the filament arclength s at time t may be described
as

x(s, t) = α(s) − V t, (3.3)

y(s, t) = −b(s) sin(ωt + φ(s)), (3.4)

z(s, t) = −b(s) cos(ωt + φ(s)), (3.5)

where α(s) is the x-component at t = 0, b(s) is the distance from the x-axis, and φ(s)
is the phase shift (Lighthill 1976). The arclength is measured relative to the free end.
Differentiating in time, the resulting velocity is

v = (−V, 0, 0) + (−ω, 0, 0) × (x, y, z). (3.6)

Writing ν = ωt + φ(s), the vector tangent to the curve is given by

t = (∂x/∂s, ∂y/∂s, ∂z/∂s)

=

(
dα

ds
, −db

ds
sin ν − b

dφ

ds
cos ν, −db

ds
cos ν + b

dφ

ds
sin ν

)
, (3.7)

and inextensibility of the filament implies(
dα

ds

)2

+

(
b
dφ

ds

)2

+

(
db

ds

)2

= 1. (3.8)

Figure 4 shows the parameters as a function of arclength over a range of Sp. In
these plots, a convention is adopted where b(s) � 0 and φ(a) = π and α(a) = 0,
where s = a corresponds to the centre of the bead at the free end. As Sp increases,
the projection of the filament along the x-axis increases (figure 4a). Figure 4(b) shows
the x-component of t , dα/ds as a function of the arclength. Since h0 = 1.0, dα/ds at
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Figure 4. The variation of (a) α(s), (b) dα/ds(s), (c) b(s), and (d) φ(s) with arclength s, with
Mn = 10. The values of α(s) and φ(s) are given relative to those of the bead at the free end
for which s = a, α(a) = 0, and φ(a) = π. The curves in each plot are for different Sp, which
begin at Sp = 1.5 and increase by increments of 0.5 to Sp = 6.0.

low Sp has a nearly constant value of cos(π/4), which corresponds to a rigid rotation
aligned with the applied field. Increasing the frequency of the applied field induces a
variation in dα/ds along the length of the filament, which in the limit of very large
frequencies will remain aligned with the x-axis, dα/ds = 1. Similarly, in figure 4(c),
we see the distance from the x-axis, b, decrease as the frequency is increased. Finally,
in figure 4(d), we see that as Sp increases, a variation in the phase shift φ arises, which
leads to the inflection point appearing at s/L ≈ 0.83 at low Sp moving to s/L ≈ 0.5
at high Sp.

To tie this parametrization to the observed scaled swimming speeds and swimming
directions, we employ the non-dimensional version of the resistive force model which
is presented in the following section. With this model and the parametrization of the
motion, an expression can be derived for the scaled swimming speed by integrating
the force balance (4.20) in the x-direction and applying the boundary conditions (4.25)
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and (4.27). The resulting expression is

U =

(1 − β)

∫ 1

0

b2 dα

ds

dφ

ds
ds

6πηR

ζ‖L
+ β + (1 − β)

∫ 1

0

(
dα

ds

)2

ds

, (3.9)

where ζ‖ and βζ‖ are the resistance coefficients, respectively, for motion tangent and
normal to the tail. Immediately, it is clear that an anisotropic drag force (β �= 1) is
necessary to obtain a non-zero swimming speed (Becker et al. 2003; Lauga 2007).
Other requirements include a non-zero x-component of t , dα/ds �= 0, a non-zero
distance from the x-axis, b(s), and a variation in the phase shift, φ(s), along the
length. Additionally, the dependence on b2 of the scaled swimming speed is consistent
with the results of the analysis found in Lauga (2007). From the inextensibility
condition, the denominator of the above expression is positive,

6πηR

ζ‖L
+ 1 + (β − 1)

(∫ 1

0

(
db

ds

)2

ds +

∫ 1

0

(
b
dφ

ds

)2

ds

)
> 0 (3.10)

as β −1 > 0. Since dα/ds � 0, U � 0 if dφ/ds � 0 and by (3.3) the swimming velocity
will be in the negative x-direction.

4. Resistive force model
Along with the particle-based model, we adopt a version of the continuous

elastica/resistive force model presented by Roper et al. (2006), but extended here
to allow for three-dimensional deformations. The hydrodynamics are provided by
simple, approximate drag laws based on slender body theory. With such a model, we
are able to generate analytic results to complement and compare with our numerical
results.

The entire magnetic filament tail is treated as a flexible, inextensible rod.
Accordingly, the general force and moment balance equations (2.8) and (2.9) for
a massless rod apply now with 0 � s � L. External forces and torques on the
filament arise due to the presence of the surrounding fluid and applied magnetic field.
Specifically,

dN
ds

+ K f = 0, (4.1)

dM
ds

+ t × N + τ f + τm = 0, (4.2)

where K f is the translational drag force per unit length, τ f is the viscous torque per
unit length and τm is the magnetic torque per unit length on the filament.

4.1. Hydrodynamic forces and torques

As the filament moves through the fluid, it will experience a drag force resisting the
motion. Using a resistive force theory to account for these forces gives

K f = −ζv, (4.3)

where v is the filament velocity and the tensor ζ is given by

ζ = ζ‖ (t t + β (I − t t)) . (4.4)
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The drag coefficient along the tangential direction ζ‖ and the drag anisotropy constant
β are those for a line of Stokeslets translating through fluid (Kim & Karrila 2005),

ζ‖ = 2πη/ log(L/a) + O((log(L/a))−2), (4.5)

β = 2, (4.6)

where L is the length of the filament, and a is the radius of filament cross-section
which is equal to the radius of a paramagnetic bead. The errors introduced by resistive
force theory arise since the model assumes a � L, but more importantly |∂ t/∂s| � 1.

Along with the translational drag, the fluid will resist rotations of the filament
about t (Wolgemuth, Powers & Goldstein 2000)

τ f = −ζr (Ω · t) t, (4.7)

with

Ω = Ω‖ t + t × dt
dt

(4.8)

being the angular velocity and ζr = 4πηa2 the coefficient for the viscous torque.

4.2. Magnetic torque

In the particle-based model, the magnetic interactions between the beads produced
interparticle forces, but the magnetic torque on each particle was zero. As all the
magnetic forces between the beads are equal and opposite, the total magnetic force
on the filament is zero. The interparticle magnetic forces will, however, produce a
net torque on each segment of the filament tail. Just as the drag per unit length is
determined by considering a series of Stokeslets distributed along a line, we adopt a
magnetic torque model where the torque per unit length,

τ =
µ0

2d
m(s) × H, (4.9)

where d = a + l/2, corresponds to that on a line distribution of point dipoles. If
the filament is straight, infinitely long and the beads comprising it are separated by
2a + l, the dipole moment of each bead is

m =
4

3
πa3χ

[
H + 2

∞∑
q=1

1

4π

(
3t(t · m)

8q3d3
− m

8q3d3

)]
. (4.10)

This differs from the expression derived by Roper et al. (2006) in that the length of
the link is included in the interparticle separation distance along with the magnetic
interactions of all the particles, and not just the adjacent pair. The inclusions of these
details are important to make a quantitative comparison with the simulations. Due
to the symmetry of the straight chain of beads and the linear relationship between
the dipole moments and the applied field, we may decompose these quantities into
their axial and transversal components,

m = (m · t) t + (I − t t) m, (4.11)

H = (H · t) t + (I − t t) H . (4.12)

On substitution into (4.10), the expression

m =
4
3
πa3χ

1 − 1
6
χ (a/d)3 ζ (3)

t(t · H) +
4
3
πa3χ

1 + 1
12

χ (a/d)3 ζ (3)
(I − t t) H (4.13)
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is obtained, where the Riemann zeta function prefactor

ζ (3) =

∞∑
k=1

1/k3 ≈ 1.2.

The resulting applied torque (4.9) is then

τm =
µ0πa6χ2ζ (3)

6d4(1 − (χ/6) (a/d)3 ζ (3)) (1 + (χ/12) (a/d)3 ζ (3))
(t · H)t × H . (4.14)

The force and moment balance are then

∂ N
∂s

= ζv (4.15)

τm + t × N +
∂ M
∂s

= ζra
2 (Ω · t) t (4.16)

The constitutive law for the stress moment is

M = Kb t × ∂ t
∂s

+ Kt

∂Ψ

∂s
t (4.17)

where, as before, Kb is the effective bending modulus and Kt is the effective twist
modulus of the filament.

4.3. Boundary conditions

At the free end, s = 0, the forces and moments must vanish so N = 0 and M = 0.
At the tethered end, s = L, the forces and moments are balanced by the translational
and rotational drag of the sphere. Taking the filament as clamped to the sphere, the
boundary conditions are

−N − 6πηR (v + Ω × R t) = 0, (4.18)

−M + R t × N − 8πηR3Ω = 0. (4.19)

4.4. Non-dimensional equations

The force and moment balance equations are non-dimensionalized by introducing
the barred variables such that t = t̄/ω, s = Ls̄, H = H0 H̄ , and N = Kb N̄/L2. On
substituting these variables into the equations, and removing the bars, we obtain

∂ N
∂s

= Γ [t t + β (I − t t)] v, (4.20)(
ζra

2

ζ‖L2

)
Γ Ω‖ t = Cm(t · H)t × H + t × ∂2 t

∂s2
+ (Kt/Kb)

∂

∂s

(
∂ψ

∂s
t
)

, (4.21)

where

Cm =
µ0πa6ζ (3)(χH0L)2

6d4Kb(1 − (χ/6) (a/d)3 ζ (3))(1 + (χ/12) (a/d)3 ζ (3))
, (4.22)

Γ = ζ‖ωL4/Kb. (4.23)

These quantities are related to Sp and Mn introduced in the experimental studies
(Dreyfus et al. 2005) and described in the previous section. Specifically,

Γ =
ζ‖Sp4

4πη
(4.24)
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and Cm = 0.811Mn. The difference between Cm and Mn is a result of the refinements
in the magnetic torque model presented here.

The boundary conditions in terms of the dimensionless variables are

N(0) = 0, (4.25)

M(0) = 0, (4.26)

N(1) = −Q1Γ

(
v(1) + Ω × R

L
t(1)

)
, (4.27)

M(1) − R

L
t × N(1) = −Q2Γ Ω(1), (4.28)

where

Q1 =
6πηR

ζ‖L
, (4.29)

Q2 =
8πηR3

ζ‖L3
. (4.30)

5. Swimming at low frequencies
With the force and moment balance equations from resistive force theory, we

would like to understand how the swimming speed is affected by the values of
relevant parameters. We are able to make some progress in this regard by considering
the case where Γ is quite low. In this regime, the swimmer will remain closely
aligned with the applied field and undergo nearly rigid rotation. Employing the
resistive force hydrodynamic drag model to study this regime is appropriate since
|∂ t/∂s| � 1. We wish to find a solution expanded, in powers of Γ , about the rigid
body rotation (Wiggins & Goldstein 1998; Wiggins et al. 1998; Roper et al. 2006).
From the simulations we expect the solution t to be of the form (3.7). Also, since
the functions α, b and φ are time-independent, it suffices to find the solution at one
specific time (Lighthill (1976)). Thus, at t = 0, the expansion is

dα

ds
=

dα0

ds
+

dα1

ds
Γ + O(Γ 2) =

1(
1 + h2

0

)1/2
+

dα1

ds
Γ + O(Γ 2), (5.1)

db

ds
=

db0

ds
+

db1

ds
Γ + O(Γ 2) =

−h0(
1 + h2

0

)1/2
+

db1

ds
Γ + O(Γ 2), (5.2)

dφ

ds
=

dφ1

ds
Γ + O(Γ 2), (5.3)

in addition to dΨ/ds = (dΨ1/ds) Γ + O(Γ 2). To avoid the discontinuity in db0/ds, a
convention where b(s) is allowed to be both positive and negative is adopted. This
also removes the jump in φ. The scaled swimming speed (3.9) is then

U =

(1 − β)
1(

1 + h2
0

)1/2

∫ 1

0

b2
0

dφ1

ds
ds

Q1 + β +
1 − β

1 + h2
0

Γ + O(Γ 2) = ŪΓ + O(Γ 2). (5.4)

From this expression, one not only sees that on deviation from a rigid body motion
the swimming speed is O(Γ ), but also that it is the result of the O(Γ ) variation in
the phase shift over the length of the filament. The inextensibility condition (3.8) at
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O(Γ ) implies
dα1

ds
= h0

db1

ds
. (5.5)

Defining

b0 = − h0(
1 + h2

0

)1/2
s + C1

and noting that at t = 0, sin ν = φ1Γ + O(Γ 2) and cos ν = 1 + O(Γ 2), the expansions
for the scaled filament velocity and the tangent vector are

v = v0 + v1Γ + O(Γ 2) (5.6)

= (0, −b0, 0) + (−Ū , 0, b0φ1)Γ + O(Γ 2), (5.7)

t = t0 + t1Γ + O(Γ 2) (5.8)

=
(
1/

(
1 + h2

0

)1/2
, 0, −h0/

(
1 + h2

0

)1/2
)

+

(
h0

db1

ds
, −d(b0φ1)

ds
,
db1

ds

)
Γ + O(Γ 2). (5.9)

Since O(1) rotations about t are not expected, the appropriate expansion for the
dimensionless angular velocity (4.8) is

Ω = Ω0 + Ω1Γ + O(Γ 2) (5.10)

=

(
− h2

0

1 + h2
0

, 0,
h0

1 + h2
0

)
+

(
0, − 1(

1 + h2
0

)1/2

d(b0φ1)

ds
, 0

)
Γ

+ Ω‖,1 t0Γ + O(Γ 2). (5.11)

The force balance (4.20) indicates that the resultant internal stress N is O(Γ ) to
first approximation. Writing N = N1Γ + N2Γ

2 +O(Γ 3), the force balance at O(Γ ) is

dN1

ds
= −βb0, (5.12)

where N1 = (0, N1, 0). The general solution is

N1 =
βh0s

2

2
(
1 + h2

0

)1/2
− βC1s + C2. (5.13)

The free-end condition (4.25) requires C2 = 0, whereas the tethered-end condition
(4.27) dictates that

C1 =
Q1(1 + R/L) + β/2

Q1 + β

h0(
1 + h2

0

)1/2
= K

h0(
1 + h2

0

)1/2
. (5.14)

The moment balance (4.21) at O(Γ ) is

Cm (t0 · H) t1 × H + t0 × N1 + t0 × d2 t1

ds2
+ (Kt/Kb)t0

d2Ψ1

ds2
= 0. (5.15)

This expression yields the three independent equations

d3b1

ds3
− σ 2 db1

ds
= 0, (5.16)

d3(b0φ1)

ds3
− σ 2 d(b0φ1)

ds
= N1, (5.17)

d2Ψ1

ds2
= 0, (5.18)
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where σ 2 = (1 + h2
0)Cm. The third equation and the free-end moment boundary

condition (4.26) imply that there is no O(Γ ) twisting, or dΨ1/ds = 0. The general
solutions to the remaining two equations are

db1

ds
= A1 cosh σs + B1 sinh σs, (5.19)

d(b0φ1)

ds
= A2 cosh σs + B2 sinh σs − N1

σ 2
− βh0

σ 4
(
1 + h2

0

)1/2
. (5.20)

The O(Γ ) boundary conditions at the free end s = 0 are

d2b1

ds2
= 0, (5.21)

d2(b0φ1)

ds2
= 0, (5.22)

while at the tethered end s = 1 they are

d2b1

ds2
= 0, (5.23)

d2(b0φ1)

ds2
+

R

L
N1 = Q2

h0(
1 + h2

0

)1/2
. (5.24)

Therefore, one deduces that A1 = B1 = 0, and db1/ds = 0. We also have

B2 = − β

σ 3

h0(
1 + h2

0

)1/2
K (5.25)

A2 =
β

sinh σ

h0(
1 + h2

0

)1/2

[
K

(
cosh σ

σ 2
− 1

σ 2
+

R

L

)
+

1

σ 2
− 1

2

R

L
+

Q2

β

]
. (5.26)

Before proceeding, we introduce

F (s) =
d(b0φ1)

ds
, (5.27)

G(s) =

∫
s

F (s ′) ds ′, (5.28)

H (s) =

∫
s

G(s ′) ds ′, (5.29)

so b0φ1 = G(s) + C3. Specifically, these functions are

F (s) = A2 cosh σs + B2 sinh σs − N1

σ 2
− βh0

σ 4
(
1 + h2

0

)1/2
, (5.30)

G(s) =
A2

σ
sinh σs +

B2

σ
cosh σs − 1

σ 2

(
βh0s

3

6
(
1 + h2

0

)1/2
− K

βh0s
2

2
(
1 + h2

0

)1/2

)

− 1

σ 4

(
βh0s(

1 + h2
0

)1/2

)
, (5.31)

H (s) =
A2

σ 2
cosh σs +

B2

σ 2
sinh σs − 1

σ 2

(
βh0s

4

24
(
1 + h2

0

)1/2
− K

βh0s
3

6
(
1 + h2

0

)1/2

)

− 1

σ 4

(
βh0s

2

2
(
1 + h2

0

)1/2

)
. (5.32)
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The force balance at O(Γ 2) is

dN2

ds
= (1 − β)t0 (t1 · v0 + t0 · v1) + βv1, (5.33)

which may be written as

dN2

ds
= (1 − β)t0

(
d(b0(G(s) + C3))

ds
+ 2

h0(
1 + h2

0

)1/2
(G(s) + C3)

− 1

(1 + h0)1/2
Ū

)
+ βv1. (5.34)

The following expressions for N2 = (N2x, 0, N2z) are obtained by integrating the above
equation and applying the free-end boundary conditions N2x = N2z = 0. We have

N2x = −Ūs

(
β +

1 − β

1 + h2
0

)
+ C3

h0(1 − β)s

1 + h2
0

+
1 − β(

1 + h2
0

)1/2

(
b0(s)G(s) − b(0)G(0) + 2

h0(
1 + h2

0

)1/2
(H (s) − H (0))

)
, (5.35)

N2z = −Ūs
(1 − β)h0

1 + h2
0

+ C3

(
h2

0(1 − β)s

1 + h2
0

+ βs

)
+ β(H (s) − H (0))

+
h0(1 − β)(
1 + h2

0

)1/2

(
b0(s)G(s) − b(0)G(0) + 2

h0(
1 + h2

0

)1/2
(H (s) − H (0))

)
. (5.36)

To determine C3 and Ū , we apply the boundary conditions at the tethered end,

N2x(1) = Q1Ū , (5.37)

N2z(1) = −Q1

(
G(1) + C3 + F (1)

R

L

)
. (5.38)

We then arrive at the expression for the scaled swimming speed,

U = ŪΓ + O(Γ 2) =
h0(β − 1)

(Q1 + 1)(Q1 + n)
(
1 + h2

0

)(
Q1

R

L
(F (1) − (G(1) − G(0))

+ (2Q1 + β)

(
1

2
(G(1) + G(0)) − (H (1) − H (0))

))
Γ + O(Γ 2). (5.39)

In figure 5, the swimming speed given by (5.39) is plotted, along with the
corresponding swimming speeds obtained from the simulations. In the plots, we
include simulation results where the hydrodynamic interactions were truncated after
the force monopole term (FCM-M) along with those including both monopoles
and dipoles (FCM-MD). In both the asymptotic results and the simulations, we
observe that at low Sp the scaled swimming speed U varies as Sp4. The asymptotic
prediction corresponds with the FCM-M results. This observation is attributed to the
resistive force approximation being the drag associated with a line of Stokeslets. The
differences in the simulation data for FCM-M and FCM-MD show the corrections
from the higher-order hydrodynamic effects. In addition, the agreement between the
simulations and the asymptotic solution improve as Mn increases, as the asymptotic
analysis assumes that Γ/Cm � 1.
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Figure 5. Scaled swimming speeds at low Sp for various Mn. The data are plotted in both
linear–linear and log–log scales. The solid lines with the circular markers correspond to the
FCM-M simulations FCM-monopole and the solid lines with the triangular markers are the
FCM-MD simulations. The dashed line is the scaled swimming speed given by (5.39). In (a)
and (b) Mn = 5 (Cm = 4.057), (c) and (d) Mn = 10 (Cm = 8.115), and (e) and (f ) Mn = 15
(Cm = 12.172).

With the expression (5.39), we may examine how the parameters governing
the magnetic forces Cm, h0 and the geometric parameter R/L affect low Sp

swimming.



Spiral swimming of an artificial micro-swimmer 313

0 5 10 15 20
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
(× 10–3)

Cm

(a) (b)

10–2 100 102 10410–6

10–5

10–4

10–3

10–2

Cm

U

Figure 6. (a) Ū as a function of Cm given by (5.39). (b) Log–log plot of Ū versus Cm (solid
line) including the value at Cm = 0 (5.40) and the asymptotic values as Cm → ∞ (5.41) (dashed
lines). In (a) and (b) R/L = 0.183 and h0 = 1.0.

5.1. Magnetic forces

Figure 6a shows the coefficient in (5.39) for the scaled swimming speed, Ū , as a
function of the parameter Cm governing the relative strength of the magnetic forces.
The relative amplitude of the transverse magnetic field, h0, is set equal to 1.0. The
swimming speed monotonically decreases with Cm. When Cm = 0, which corresponds
to the absence of an applied magnetic field, the swimming speed is finite and has the
value

Ū =
β(β − 1)h2

0

(Q1 + 1)(Q1 + β)2
(
1 + h2

0

)3/2

[ (
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+
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(
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L

)3
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1

3

+
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β
(Q1 + β)

(
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3

R

L
+

β

24

) ]
. (5.40)

This result may seem alarming, but in expanding the solution it was assumed that
Γ/Cm � 1, and therefore as Cm → 0 the range of Γ over which (5.39) is valid
becomes vanishingly small (Roper et al. 2006).

As Cm increases, the swimming speed decreases as a result of the increased magnetic
torque keeping the filament aligned with the field’s direction. In the limit Cm → ∞,

Ū → β(β − 1)h2
0

Cm1/2(Q1 + 1)(Q1 + β)2
(
1 + h2

0

)2
Q1

R

L

[
Q1

R

L

(
1

2
+

R

L

)

+
Q2

β
(Q1 + β)

]
, (5.41)

so, U ∼ Mn−1/2. In figure 6(b) the value of Ū is plotted as a function of Cm as given
by (5.39) along with the value at Cm = 0 and the asymptotic value Cm → ∞.
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Figure 7. (a) Ū as a function of h0 for Mn = 5 (Cm = 4.057) (solid line), Mn = 10
(Cm = 8.115) (dashed line), Mn = 15 (Cm = 12.172) (dotted line), and Mn = 20 (Cm = 16.23)
(dash-dotted line) with R/L = 0.183. (b) Log–log plot of Ū (solid line) and the asymptotic
values for h0 → 0 and h0 → ∞ (5.42) (dashed lines) with Mn = 10 and R/L = 0.183.

As the relative amplitude of the transverse magnetic field, h0, increases, the
swimming speed will increase to a peak value that occurs at h0 ≈ 1 and subsequently
decays as h0 → ∞ (figure 7a). The limit h0 → 0 corresponds to the magnitude of the
transverse field approaching zero. In this limit the swimmer will remain aligned with
the x-axis, so b(s), and consequently U will vanish. Since σ →

√
Cm, the values of

the functions listed in Appendix B all scale linearly in h0. Therefore, from (5.39), we
have Ū ∼ h2

0.
At the other extreme, when h0 → ∞, the transverse field is much greater in

magnitude than the constant field. In fact, the magnitude of the total field becomes
unbounded. Therefore, in this limit, the swimmer will remain closely aligned with the
applied field and rotate as a rigid body. Also, since the applied field is essentially
localized to the yz-plane, dα/ds will be zero. For these reasons, a significant swimming
speed is not expected at this limit either. To obtain the asymptotic expression, we
recognize σ → h0

√
Cm, and as a result

Ū → β(β − 1))

(Q1 + 1)(Q1 + n)h2
0

√
Cm

Q1

R

L

(
K

R

L
− 1

2

R

L

Q2

β

)
. (5.42)

This leading-order term is from F (1) in (5.39), which is associated with the force
balance boundary condition term Ω × R t in (4.1). In figure 7(b) we plot Ū as a
function of h0 along with the asymptotic values. The h0 → 0 asymptotic value was
calculated by using σ =

√
Cm.

5.2. Swimmer geometry

The low-Sp swimming speed increases monotonically with R/L. In this case, the
validity of the calculation is limited to situations where R/L does not exceed R/L ∼
O(1). Within this range, the calculation indicates that the larger cargo size increases
the deformation of the filament which, in turn, produces higher swimming speeds.
At large R/L, however, the drag becomes excessive and should cause the swimming
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Figure 8. (a) Ū as a function of R/L for Mn = 5 (solid line), Mn = 10 (dashed line), Mn = 15
(dotted line), and Mn = 20 (dash-dotted line) with h0 = 1.0. (b) Log-log plot of Ū (solid
line) and the asymptotic values for R/L → 0 (5.44) and R/L → ∞ (5.46) (dashed lines) with
Mn = 10 and h0 = 1.

speed to decrease. This effect is not captured by this calculation. When R/L = 0
swimming is not expected since, in the absence of the sphere, the magnetic filament
considered here is a symmetric body. This is recovered by the asymptotic solution. In
a more general setting, however, variations in the magnetic susceptibility, χ , or in the
elastic properties of the links (Roper et al. 2006) along the filament can produce the
asymmetry in the bending wave necessary to generate a net translation in the absence
of any cargo.

In the limit of R/L → 0,

K → 1

2
+

Q1

2β
, (5.43)

and the coefficient Ū for the swimming speed takes the limit

Ū → (β − 1))h2
0

(1 + h0)3/2

Q1

2

(
1

12σ 2
− 1

σ 4
+

2

σ 5

cosh σ − 1

sinh σ

)
. (5.44)

Therefore, Ū ∼ R/L. On the other hand, as R/L → ∞,

K → R

L
. (5.45)

With this value for K the limiting value for Ū is

Ū → (β − 1)h2
0

(1 + h0)3/2

Q2(R/L)

Q1

(
cosh σ

σ sinh σ
− 1

σ 2

)
, (5.46)

and thus Ū ∼ (R/L)3.
Figure 8(b) shows Ū as a function of R/L along with the asymptotic values

presented above. We see that at R/L ≈ 0.1, the dependence begins to transition from
linear to cubic. When R/L is small, the sphere’s translational drag is greater than its
rotational drag. Therefore, the deformation of the filament that leads to swimming
is a result of the asymmetry caused by the translation of the sphere. However, once
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R/L becomes large enough, the rotational drag will be larger than the translational
drag, and, accordingly, the dependence of deformation associated with swimming will
be ∼ (R/L)3.

6. Summary and conclusions
A fully three-dimensional simulation scheme has been presented that describes

the dynamics of a chain of discrete paramagnetic beads bonded together by short
flexible links to form a tail attached to a larger spherical particle or head. The scheme
captures in detail the effects of magnetic, fluid and elastic forces within the filament.
It has been demonstrated that the magnetic micro-swimmer introduced by Dreyfus
et al. (2005) with planar actuation can be used as a model to study a corkscrew form
of swimming, driven by a rotating magnetic field. In a rotating field, the swimmer will
deform into a spiral shape that rotates about an axis in the direction of swimming.
The kinematics of the motion were extracted and parameterized by time-independent
functions describing the pitch, the distance from the axis of symmetry and the
phase shift along the length of the tail. Further, the correspondence between this
parameterization and the observed swimming velocity was established.

An approximate description of the motion was provided by a resistive force model
in which the filament tail is treated as a continuous elastica subject to a distributed
magnetic torque per unit length. An asymptotic analysis for low-frequency rotations
predicted that the swimming speed grows initially as U ∼ Sp4. The refinements to the
resistive force model described in § 4 were essential in order to match the simulation
results. Once this was done, there was a good correspondence between the two for the
swimming at low frequency. The asymptotic analysis further identified broadly the
effects of varying the other parameters governing the magnetic field and the geometry.

At the time of writing, there has been no experimental demonstration of spiral
swimming of an artificial micro-swimmer. The present results, however, indicate that
such a motion is possible, and effective. Additionally, it opens the question as to what
other applied fields might be devised to generate more complex dynamics exhibited by
micro-organisms. For example, as the artificial swimmer will move in the direction of
the constant component of the applied field, the direction of this field can be changed
over time to yield a helical swimming path similar to that of sea urchin sperm during
chemotaxis (Friedrich & Jülicher 2007). The manipulation and propulsion of artificial
micro-swimmers with unsteady magnetic fields provide insights into the more general
questions regarding swimming micro-organisms. Naturally occurring spiral swimmers
such as bacteria are both force-free and torque-free, with the torque exerted by a
rotating flagellum counter-balanced by the viscous torque of the counter-rotating
head. The magnetic swimmer is force-free but subject to a net torque from the
external field. The magnetic tail, though, deforms in response to elastic and fluid
forces and thus demonstrates the response that may be characteristic of more general
systems. In particular, artificial swimmers may be used to explore the complexities of
swimmer–swimmer interactions and of swimming organisms near a bounding surface
or in the presence of an ambient shear flow. The discrete particle description of
the simulations lends itself to these situations where resistive force models may be
inaccurate or too complex to analyse.
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Appendix A
The solutions to (2.18) and (2.19) subject to the boundary conditions (2.20) depend

on the sign of λ1.

A.1. λ1 = 0

In this case, (2.18) and (2.19) reduce to

κ
d2Φ

ds2
= −λ2, (A 1)

κ
d2Θ

ds2
= λ3, (A 2)

which, after applying the boundary conditions, have solutions

Φ(s) =
−λ2

2κ
(s − l)s + Φns/l, (A 3)

Θ(s) =
λ3

2κ
(s − l)s + Θns/l. (A 4)

A.2. λ1 < 0

In this situation we have

κ
d2Φ

ds2
+ |λ1| Φ = −λ2, (A 5)

κ
d2Θ

ds2
+ |λ1| Θ = λ3, (A 6)

which have general solutions

Φ(s) = D1 cos(
√

|λ1| /κs) + D2 sin(
√

|λ1| /κs) − λ2/ |λ1|, (A 7)

Θ(s) = D3 cos(
√

|λ1| /κs) + D4 sin(
√

|λ1| /κs) + λ3/ |λ1|. (A 8)

Upon applying the clamped end boundary conditions, we see

D1 = λ2/|λ1|, (A 9)

D2 =
Φn − λ2/ |λ1| (cos(

√
|λ1| /κl) − 1)

sin(
√

|λ1| /κl)
, (A 10)

D3 = −λ3/|λ1|, (A 11)

D4 =
Θn + λ3/ |λ1| (cos(

√
|λ1| /κl) − 1)

sin(
√

|λ1| /κl)
. (A 12)

A.3. λ1 > 0

Here,

κ
d2Φ

ds2
− |λ1| Φ = −λ2, (A 13)

κ
d2Θ

ds2
− |λ1| Θ = λ3. (A 14)
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The general solutions are

Φ(s) = E1 cosh(
√

|λ1| /κs) + E2 sinh(
√

|λ1| /κs) + λ2/ |λ1|, (A 15)

Θ(s) = E3 cosh(
√

|λ1| /κs) + E4 sinh(
√

|λ1| /κs) − λ3/ |λ1|, (A 16)

and the boundary conditions imply

E1 = −λ2/ |λ1|, (A 17)

E2 =
Φn + λ2/ |λ1| (cosh(

√
|λ1| /κl) − 1)

sinh(
√

|λ1| /κl)
, (A 18)

E3 = λ3/ |λ1|, (A 19)

E4 =
Θn − λ3/ |λ1| (cosh(

√
|λ1| /κl) − 1)

sinh(
√

|λ1| /κl)
. (A 20)

Appendix B
In the expression derived for the O(Γ ) swimming speed we see the values of the

functions F (s), G(s), and, H (s) at the free and tethered ends. The values of these
functions are

F (1) =
βh0(
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H (1) − H (0) =
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G(1) =
βh0
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G(0) = − βh0
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